Spin Structure Functions of the Deuteron

Sebastian E. Kuhn

Old Dominion University
Norfolk, Virginia

Workshop on
"Testing QCD through Spin Observables in **Nuclear** Targets"
Charlottesville, April 19, 2002

Overview

Introduction

- Asymmetries and spin structure functions
- "Neutron" targets?

Example: The EG1 Experiment in CLAS

- Experimental setup
- First results on ND₃
- Outlook

From Nuclei to Nucleons

- Nuclear effects on spin structure functions
- Example: g_1 for the deuterium
- World data for ³He vs. D

Conclusions

Longitudinal SpinAsymmetry:

Spin Structure Functions:

$$g_1(x,Q^2) = \frac{Q^2}{q^2} F_1(x,Q^2) + \frac{Q}{Q} A_2(x,Q^2)$$

Momentum fraction of struck quark in Breit frame $x = \frac{Q^2}{2M\Pi}$

Light cone fraction of struck quark
$$\Box = \frac{p_q^0 + p_q^3}{P_N^0 + P_N^3} = \frac{Q^2}{M(q + \Box)}$$

Why Neutrons?

Bjorken Sum Rule (for $Q^2 \square \infty$):

$$\prod_{0}^{1} \left[g_{1}^{p}(x) \prod_{0} g_{1}^{n}(x) \right] dx = \frac{1}{6} \left[\left(\prod_{0} u + \prod_{0} \overline{u} \right) \prod_{0} \left(\prod_{0} d + \prod_{0} \overline{d} \right) \right] = \frac{g_{A}}{6}$$

Quark Contribution to the Proton Spin:

$$\prod_{0}^{1} \left[g_{1}^{p}(x) + g_{1}^{n}(x) \right] dx = \frac{5}{18} \left[\left[u + \left[\overline{u} + \left[d + \left[\overline{d} \right] \right] + \frac{2}{5} \left(\left[s + \left[\overline{s} \right] \right] \right) \right] \right]$$

Gerasimov-Drell-Hearn Sum Rule (for $Q^2 \square 0$):

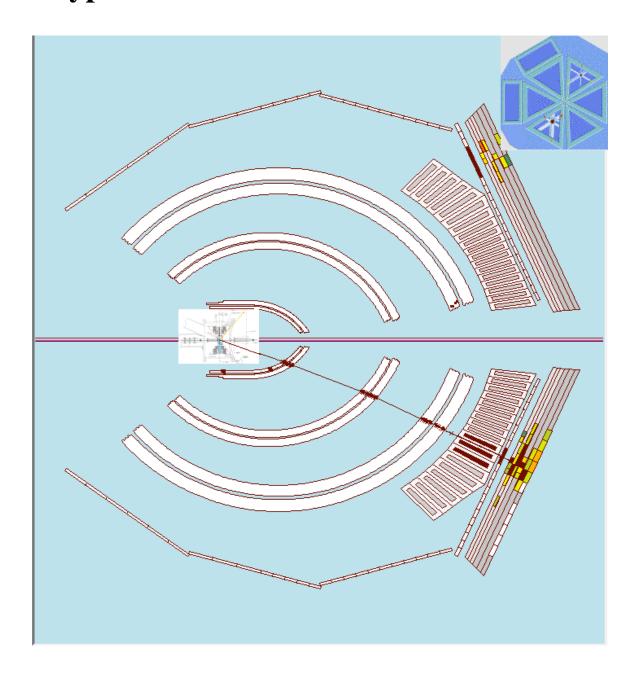
$$\prod_{0}^{1} g_{1}^{N}(x, Q^{2}) dx = \frac{Q^{2}}{16 \square^{2} \square} \prod_{\square_{thr}} \square^{1/2} (\square) \square \square_{T}^{3/2} (\square) \frac{d\square}{\square} = \square \frac{Q^{2}}{8M^{2}} \square_{N}^{2}$$

Spin-Isospin Decomposition of Resonant and

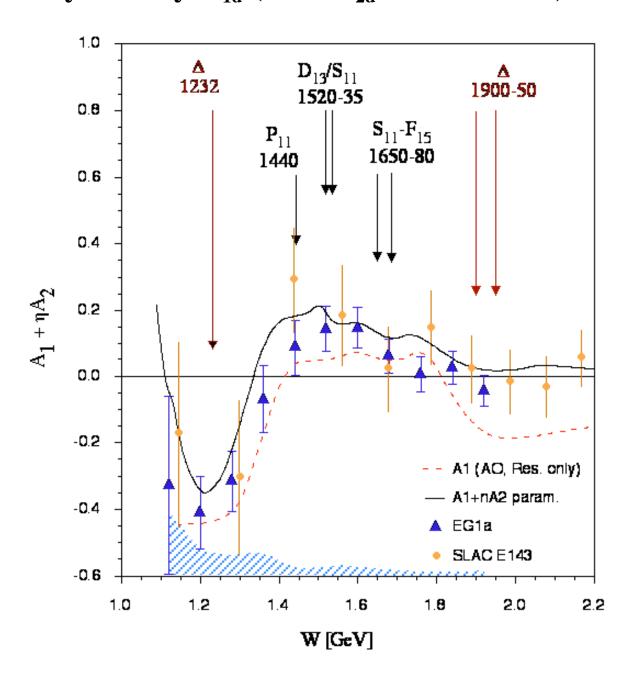
Background Amplitudes

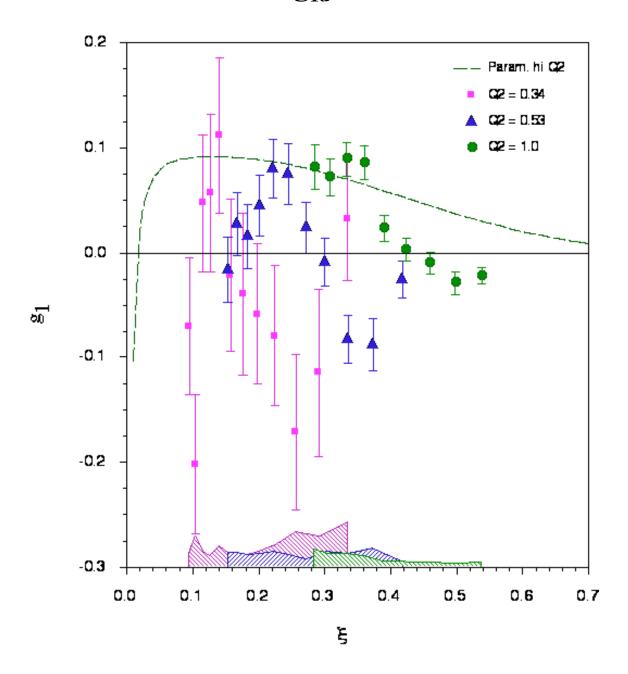

How Neutrons?

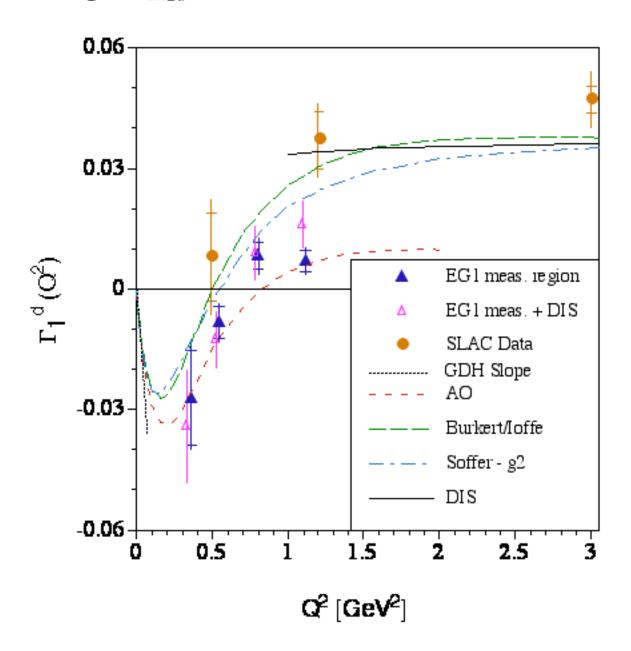
Polarized ³He: approx. a polarized single neutron

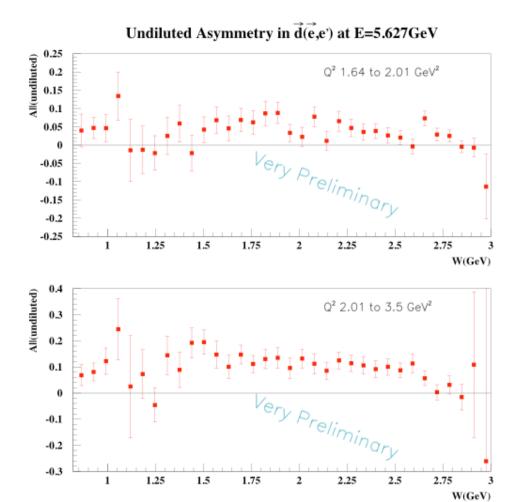

Polarized ²H: approx. a polarized proton and a polarized

neutron


EG1a polarized target

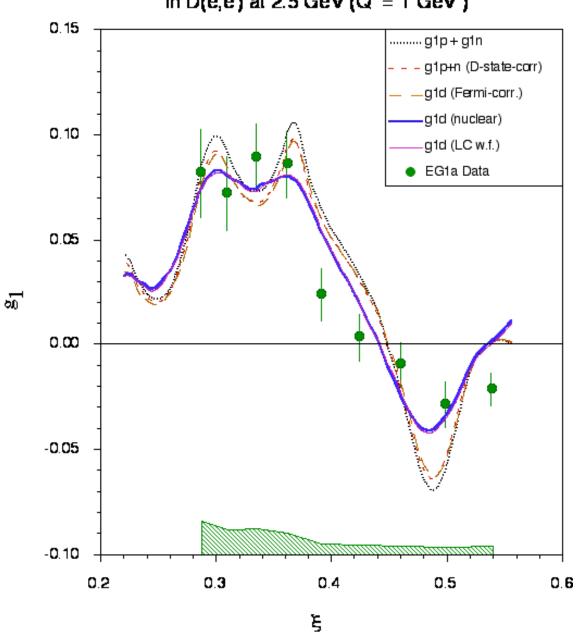

"Typical" Event in CLAS


Asymmetry A_{1d} (with A_{2d} contribution)


Structure Function g_{1d}

Integral \square_{1d}

The Future – EG1b (a.k.a. EG2000)


Nuclear Effects

	Deuterium †	³ He↑
0 th order approximation	p↑n↑	p↑p□n↑
D-state, S' state etc.	$\square_{D} = \square_{p} + \square_{n} - 0.022$	$\square_{\text{He}} = \square_{\text{n}} - 0.214$
Fermi motion	$p_{RMS} = 130 \text{ MeV/c}$	$p_{RMS} = 170 \text{ MeV/c}$
Binding Effects	E_{bound} - E_{free} -10MeV	E_{bound} - E_{free} -20 MeV
Tensor Polarization	$P_{zz} \square 0.1$	n.a.
"EMC" Effects	$\square \square 0.063 \text{ N/fm}^3$	$\square \square 0.094 \text{ N/fm}^3$
Final State interactions		
Coherent processes		
Pre-existing []'s?	$P_{\Box\Box} < 0.5\%$	$P_{\square\square} \square 2\%$?
Pion excess?	2% ?	5% ?
Other exotic compon.?	??	??

Claim: Most of these effects (except D/S' state) are minor for integrals and for high Q² and W (DIS). Extracting information in the resonance region requires careful attention to "unfolding" procedure.

Modeling nuclear effects in D

Nuclear Effects on Spin Structure Functions in $\vec{D}(\vec{e},e')$ at 2.5 GeV ($\vec{Q}^2 = 1 \text{ GeV}^2$)

Conclusions

- First data in the non-DIS region exist both on deuterium and ³He. Many more data have been taken and are presently being analyzed.
- In the DIS region, nuclear corrections appear uncritical and the data from different nuclear species are in agreement.
- In the resonance region and at low Q², proper accounting for nuclear effects is more critical. Comparison between different nuclear species is really important main sources of uncertainties are quite different between deuterium and ³He.
- Several Experiments have taken data or are being planned to directly study nuclear effects on nucleon structure functions (EG1b, E6, BoNuS, ...)